Ieee Signal Processing Magazine

Ieee Signal Processing Magazine

IEEE 信号处理杂志

  • 1区 中科院分区
  • Q1 JCR分区

期刊简介

《Ieee Signal Processing Magazine》是由Institute of Electrical and Electronics Engineers Inc.出版社于1984年创办的英文国际期刊(ISSN: 1053-5888,E-ISSN: 1558-0792),该期刊长期致力于工程:电子与电气领域的创新研究,主要研究方向为工程技术-工程:电子与电气。作为SCIE收录期刊(JCR分区 Q1,中科院 1区),本刊采用OA未开放获取模式(OA占比0%),以发表工程:电子与电气领域等方向的原创性研究为核心(研究类文章占比100.00%%)。凭借严格的同行评审与高效编辑流程,期刊年载文量精选控制在86篇,确保学术质量与前沿性。成果覆盖Web of Science、Scopus等国际权威数据库,为学者提供推动工程技术领域高水平交流平台。

投稿咨询

投稿提示

Ieee Signal Processing Magazine审稿周期约为 较慢,6-12周 。该刊近年未被列入国际预警名单,年发文量约86篇,录用竞争适中,主题需确保紧密契合工程技术前沿。投稿策略提示:避开学术会议旺季投稿以缩短周期,语言建议专业润色提升可读性。

  • 工程技术 大类学科
  • English 出版语言
  • 是否预警
  • SCIE 期刊收录
  • 86 发文量

中科院分区

中科院 SCI 期刊分区 2023年12月升级版

Top期刊 综述期刊 大类学科 小类学科
工程技术
1区
ENGINEERING, ELECTRICAL & ELECTRONIC 工程:电子与电气
2区

中科院 SCI 期刊分区 2022年12月升级版

Top期刊 综述期刊 大类学科 小类学科
工程技术
1区
ENGINEERING, ELECTRICAL & ELECTRONIC 工程:电子与电气
1区

JCR分区

按JIF指标学科分区 收录子集 分区 排名 百分位
学科:ENGINEERING, ELECTRICAL & ELECTRONIC SCIE Q1 12 / 352

96.7%

按JCI指标学科分区 收录子集 分区 排名 百分位
学科:ENGINEERING, ELECTRICAL & ELECTRONIC SCIE Q1 5 / 354

98.73%

CiteScore

CiteScore SJR SNIP CiteScore 排名
CiteScore:27.2 SJR:4.896 SNIP:5.469
学科类别 分区 排名 百分位
大类:Mathematics 小类:Applied Mathematics Q1 2 / 635

99%

大类:Mathematics 小类:Electrical and Electronic Engineering Q1 8 / 797

99%

大类:Mathematics 小类:Signal Processing Q1 2 / 131

98%

期刊发文

  • Physics-Inspired Compressive Sensing: Beyond deep unrolling

    Author: Zhang, Jian; Chen, Bin; Xiong, Ruiqin; Zhang, Yongbing

    Journal: IEEE SIGNAL PROCESSING MAGAZINE. 2023; Vol. 40, Issue 1, pp. 58-72. DOI: 10.1109/MSP.2022.3208394

  • Learning Nonlocal Sparse and Low-Rank Models for Image Compressive Sensing: Nonlocal sparse and low-rank modeling

    Author: Zha, Zhiyuan; Wen, Bihan; Yuan, Xin; Ravishankar, Saiprasad; Zhou, Jiantao; Zhu, Ce

    Journal: IEEE SIGNAL PROCESSING MAGAZINE. 2023; Vol. 40, Issue 1, pp. 32-44. DOI: 10.1109/MSP.2022.3217936

  • Bayesian Deep Learning for Image Reconstruction: From structured sparsity to uncertainty estimation

    Author: Dong, Weisheng; Wu, Jinjian; Li, Leida; Shi, Guangming; Li, Xin

    Journal: IEEE SIGNAL PROCESSING MAGAZINE. 2023; Vol. 40, Issue 1, pp. 73-84. DOI: 10.1109/MSP.2022.3176421

  • Physics-Driven Deep Learning Methods for Fast Quantitative Magnetic Resonance Imaging: Performance improvements through integration with deep neural networks

    Author: Zhu, Yanjie; Cheng, Jing; Cui, Zhuo-Xu; Zhu, Qingyong; Ying, Leslie; Liang, Dong

    Journal: IEEE SIGNAL PROCESSING MAGAZINE. 2023; Vol. 40, Issue 2, pp. 116-128. DOI: 10.1109/MSP.2023.3236483

  • Physics-Driven Synthetic Data Learning for Biomedical Magnetic Resonance: The imaging physics-based data synthesis paradigm for artificial intelligence

    Author: Yang, Qinqin; Wang, Zi; Guo, Kunyuan; Cai, Congbo; Qu, Xiaobo

    Journal: IEEE SIGNAL PROCESSING MAGAZINE. 2023; Vol. 40, Issue 2, pp. 129-140. DOI: 10.1109/MSP.2022.3183809

  • Physics-/Model-Based and Data-Driven Methods for Low-Dose Computed Tomography: A survey

    Author: Xia, Wenjun; Shan, Hongming; Wang, Ge; Zhang, Yi

    Journal: IEEE SIGNAL PROCESSING MAGAZINE. 2023; Vol. 40, Issue 2, pp. 89-100. DOI: 10.1109/MSP.2022.3204407

  • High-Dimensional MR Spatiospectral Imaging by Integrating Physics-Based Modeling and Data-Driven Machine Learning: Current progress and future directions

    Author: Lam, Fan; Peng, Xi; Liang, Zhi-Pei

    Journal: IEEE SIGNAL PROCESSING MAGAZINE. 2023; Vol. 40, Issue 2, pp. 101-115. DOI: 10.1109/MSP.2022.3203867

  • Physics-Embedded Machine Learning for Electromagnetic Data Imaging: Examining three types of data-driven imaging methods

    Author: Guo, Rui; Huang, Tianyao; Li, Maokun; Zhang, Haiyang; Eldar, Yonina C.

    Journal: IEEE SIGNAL PROCESSING MAGAZINE. 2023; Vol. 40, Issue 2, pp. 18-31. DOI: 10.1109/MSP.2022.3198805