-
Physics-Inspired Compressive Sensing: Beyond deep unrolling
Author: Zhang, Jian; Chen, Bin; Xiong, Ruiqin; Zhang, Yongbing
Journal: IEEE SIGNAL PROCESSING MAGAZINE. 2023; Vol. 40, Issue 1, pp. 58-72. DOI: 10.1109/MSP.2022.3208394
-
Learning Nonlocal Sparse and Low-Rank Models for Image Compressive Sensing: Nonlocal sparse and low-rank modeling
Author: Zha, Zhiyuan; Wen, Bihan; Yuan, Xin; Ravishankar, Saiprasad; Zhou, Jiantao; Zhu, Ce
Journal: IEEE SIGNAL PROCESSING MAGAZINE. 2023; Vol. 40, Issue 1, pp. 32-44. DOI: 10.1109/MSP.2022.3217936
-
Bayesian Deep Learning for Image Reconstruction: From structured sparsity to uncertainty estimation
Author: Dong, Weisheng; Wu, Jinjian; Li, Leida; Shi, Guangming; Li, Xin
Journal: IEEE SIGNAL PROCESSING MAGAZINE. 2023; Vol. 40, Issue 1, pp. 73-84. DOI: 10.1109/MSP.2022.3176421
-
Physics-Driven Deep Learning Methods for Fast Quantitative Magnetic Resonance Imaging: Performance improvements through integration with deep neural networks
Author: Zhu, Yanjie; Cheng, Jing; Cui, Zhuo-Xu; Zhu, Qingyong; Ying, Leslie; Liang, Dong
Journal: IEEE SIGNAL PROCESSING MAGAZINE. 2023; Vol. 40, Issue 2, pp. 116-128. DOI: 10.1109/MSP.2023.3236483
-
Physics-Driven Synthetic Data Learning for Biomedical Magnetic Resonance: The imaging physics-based data synthesis paradigm for artificial intelligence
Author: Yang, Qinqin; Wang, Zi; Guo, Kunyuan; Cai, Congbo; Qu, Xiaobo
Journal: IEEE SIGNAL PROCESSING MAGAZINE. 2023; Vol. 40, Issue 2, pp. 129-140. DOI: 10.1109/MSP.2022.3183809
-
Physics-/Model-Based and Data-Driven Methods for Low-Dose Computed Tomography: A survey
Author: Xia, Wenjun; Shan, Hongming; Wang, Ge; Zhang, Yi
Journal: IEEE SIGNAL PROCESSING MAGAZINE. 2023; Vol. 40, Issue 2, pp. 89-100. DOI: 10.1109/MSP.2022.3204407
-
High-Dimensional MR Spatiospectral Imaging by Integrating Physics-Based Modeling and Data-Driven Machine Learning: Current progress and future directions
Author: Lam, Fan; Peng, Xi; Liang, Zhi-Pei
Journal: IEEE SIGNAL PROCESSING MAGAZINE. 2023; Vol. 40, Issue 2, pp. 101-115. DOI: 10.1109/MSP.2022.3203867
-
Physics-Embedded Machine Learning for Electromagnetic Data Imaging: Examining three types of data-driven imaging methods
Author: Guo, Rui; Huang, Tianyao; Li, Maokun; Zhang, Haiyang; Eldar, Yonina C.
Journal: IEEE SIGNAL PROCESSING MAGAZINE. 2023; Vol. 40, Issue 2, pp. 18-31. DOI: 10.1109/MSP.2022.3198805